
curl(1) Curl Manual curl(1)

NAME
curl − transfer a URL

SYNOPSIS
curl [options] [URL...]

DESCRIPTION
curl is a tool to transfer data from or to a server, using one of the supported protocols (DICT, FILE, FTP,
FTPS, GOPHER, HTTP, HTTPS, IMAP, IMAPS, LDAP, LDAPS, POP3, POP3S, RTMP, RTSP, SCP,
SFTP, SMTP, SMTPS, TELNET and TFTP). The command is designed to work without user interaction.

curl offers a busload of useful tricks like proxy support, user authentication, FTP upload, HTTP post, SSL
connections, cookies, file transfer resume, Metalink, and more. As you will see below, the number of fea-
tures will make your head spin!

curl is powered by libcurl for all transfer-related features. Seelibcurl (3) for details.

URL
The URL syntax is protocol-dependent. You’ll find a detailed description in RFC 3986.

You can specify multiple URLs or parts of URLs by writing part sets within braces as in:

http://site.{one,two,three}.com

or you can get sequences of alphanumeric series by using [] as in:

ftp://ftp.numericals.com/file[1-100].txt
ftp://ftp.numericals.com/file[001-100].txt (withleading zeros)
ftp://ftp.letters.com/file[a-z].txt

Nested sequences are not supported, but you can use several ones next to each other:

http://any.org/archive[1996-1999]/vol[1-4]/part{a,b,c}.html

You can specify any amount of URLs on the command line. They will be fetched in a sequential manner in
the specified order.

You can specify a step counter for the ranges to get every Nth number or letter:

http://www.numericals.com/file[1-100:10].txt
http://www.letters.com/file[a-z:2].txt

If you specify URL without protocol:// prefix, curl will attempt to guess what protocol you might want. It
will then default to HTTP but try other protocols based on often-used host name prefixes. For example, for
host names starting with "ftp." curl will assume you want to speak FTP.

curl will do its best to use what you pass to it as a URL. It is not trying to validate it as a syntactically cor-
rect URL by any means but is insteadvery liberal with what it accepts.

curl will attempt to re-use connections for multiple file transfers, so that getting many files from the same
server will not do multiple connects / handshakes. This improves speed. Of course this is only done on files
specified on a single command line and cannot be used between separate curl invokes.

PROGRESS METER
curl normally displays a progress meter during operations, indicating the amount of transferred data, trans-
fer speeds and estimated time left, etc.

Curl 7.27.0 27 July 2012 1

curl(1) Curl Manual curl(1)

curl displays this data to the terminal by default, so if you invoke curl to do an operation and it is about to
write data to the terminal, itdisablesthe progress meter as otherwise it would mess up the output mixing
progress meter and response data.

If you want a progress meter for HTTP POST or PUT requests, you need to redirect the response output to
a file, using shell redirect (>), -o [file] or similar.

It is not the same case for FTP upload as that operation does not spit out any response data to the terminal.

If you prefer a progress "bar" instead of the regular meter,-# is your friend.

OPTIONS
In general, all boolean options are enabled with --option and yet again disabled with --no-option. That is,
you use the exact same option name but prefix it with "no-". However, in this list we mostly only list and
show the --option version of them. (This concept with --no options was added in 7.19.0. Previously most
options were toggled on/off on repeated use of the same command line option.)

-#, --progress-bar
Make curl display progress as a simple progress bar instead of the standard, more informational,
meter.

-0, --http1.0
(HTTP) Forces curl to issue its requests using HTTP 1.0 instead of using its internally preferred:
HTTP 1.1.

-1, --tlsv1
(SSL) Forces curl to use TLS version 1 when negotiating with a remote TLS server.

-2, --sslv2
(SSL) Forces curl to use SSL version 2 when negotiating with a remote SSL server.

-3, --sslv3
(SSL) Forces curl to use SSL version 3 when negotiating with a remote SSL server.

-4, --ipv4
If curl is capable of resolving an address to multiple IP versions (which it is if it is IPv6-capable),
this option tells curl to resolve names to IPv4 addresses only.

-6, --ipv6
If curl is capable of resolving an address to multiple IP versions (which it is if it is IPv6-capable),
this option tells curl to resolve names to IPv6 addresses only.

-a, --append
(FTP/SFTP) When used in an upload, this will tell curl to append to the target file instead of over-
writing it. If the file doesn’t exist, it will be created. Note that this flag is ignored by some SSH
servers (including OpenSSH).

-A, --user-agent <agent string>
(HTTP) Specify the User-Agent string to send to the HTTP server. Some badly done CGIs fail if
this field isn’t set to "Mozilla/4.0". To encode blanks in the string, surround the string with single
quote marks. This can also be set with the-H, --headeroption of course.

If this option is used several times, the last one will be used.

--anyauth
(HTTP) Tells curl to figure out authentication method by itself, and use the most secure one the
remote site claims to support. This is done by first doing a request and checking the response-
headers, thus possibly inducing an extra network round-trip. This is used instead of setting a spe-
cific authentication method, which you can do with--basic, --digest, --ntlm, and --negotiate.

Note that using --anyauth is not recommended if you do uploads from stdin, since it may require

Curl 7.27.0 27 July 2012 2

curl(1) Curl Manual curl(1)

data to be sent twice and then the client must be able to rewind. If the need should arise when
uploading from stdin, the upload operation will fail.

-b, --cookie <name=data>
(HTTP) Pass the data to the HTTP server as a cookie. It is supposedly the data previously received
from the server in a "Set-Cookie:" line.The data should be in the format "NAME1=VALUE1;
NAME2=VALUE2".

If no ’=’ symbol is used in the line, it is treated as a filename to use to read previously stored
cookie lines from, which should be used in this session if they match. Using this method also acti-
vates the "cookie parser" which will make curl record incoming cookies too, which may be handy
if you’re using this in combination with the-L, --locationoption. The file format of the file to read
cookies from should be plain HTTP headers or the Netscape/Mozilla cookie file format.

NOTE that the file specified with-b, --cookieis only used as input. No cookies will be stored in
the file. To store cookies, use the-c, --cookie-jaroption or you could even sav ethe HTTP headers
to a file using-D, --dump-header!

If this option is used several times, the last one will be used.

-B, --use-ascii
(FTP/LDAP) Enable ASCII transfer. For FTP, this can also be enforced by using an URL that ends
with ";type=A". This option causes data sent to stdout to be in text mode for win32 systems.

--basic (HTTP) Tells curl to use HTTP Basic authentication. This is the default and this option is usually
pointless, unless you use it to override a previously set option that sets a different authentication
method (such as--ntlm, --digest, or --negotiate).

-c, --cookie-jar <file name>
(HTTP) Specify to which file you want curl to write all cookies after a completed operation. Curl
writes all cookies previously read from a specified file as well as all cookies received from remote
server(s). If no cookies are known, no file will be written. The file will be written using the Net-
scape cookie file format. If you set the file name to a single dash, "-", the cookies will be written to
stdout.

This command line option will activate the cookie engine that makes curl record and use cookies.
Another way to activate it is to use the-b, --cookieoption.

If the cookie jar can’t be created or written to, the whole curl operation won’t fail or even report an
error clearly. Using -v will get a warning displayed, but that is the only visible feedback you get
about this possibly lethal situation.

If this option is used several times, the last specified file name will be used.

-C, --continue-at <offset>
Continue/Resume a previous file transfer at the given offset. The given offset is the exact number
of bytes that will be skipped, counting from the beginning of the source file before it is transferred
to the destination. If used with uploads, the FTP server command SIZE will not be used by curl.

Use "-C -" to tell curl to automatically find out where/how to resume the transfer. It then uses the
given output/input files to figure that out.

If this option is used several times, the last one will be used.

--ciphers <list of ciphers>
(SSL) Specifies which ciphers to use in the connection. The list of ciphers must specify valid
ciphers. Read up on SSL cipher list details on this URL:
http://www.openssl.org/docs/apps/ciphers.html

Curl 7.27.0 27 July 2012 3

curl(1) Curl Manual curl(1)

NSS ciphers are done differently than OpenSSL and GnuTLS. The full list of NSS ciphers is in the
NSSCipherSuite entry at this URL: http://git.fedora-
hosted.org/cgit/mod_nss.git/plain/docs/mod_nss.html#Directives

If this option is used several times, the last one will be used.

--compressed
(HTTP) Request a compressed response using one of the algorithms curl supports, and save the
uncompressed document. If this option is used and the server sends an unsupported encoding, curl
will report an error.

--connect-timeout <seconds>
Maximum time in seconds that you allow the connection to the server to take. Thisonly limits the
connection phase, once curl has connected this option is of no more use. See also the-m, --max-
timeoption.

If this option is used several times, the last one will be used.

--create-dirs
When used in conjunction with the-o option, curl will create the necessary local directory hierar-
chy as needed. This option creates the dirs mentioned with the-o option, nothing else. If the-o file
name uses no dir or if the dirs it mentions already exist, no dir will be created.

To create remote directories when using FTP or SFTP, try --ftp-create-dirs.

--crlf (FTP) Convert LF to CRLF in upload. Useful for MVS (OS/390).

--crlfile <file>
(HTTPS/FTPS) Provide a file using PEM format with a Certificate Revocation List that may spec-
ify peer certificates that are to be considered revoked.

If this option is used several times, the last one will be used.

(Added in 7.19.7)

-d, --data <data>
(HTTP) Sends the specified data in a POST request to the HTTP server, in the same way that a
browser does when a user has filled in an HTML form and presses the submit button. This will
cause curl to pass the data to the server using the content-type application/x-www-form-urlen-
coded. Compareto -F, --form.

-d, --datais the same as--data-ascii. To post data purely binary, you should instead use the--data-
binaryoption. To URL-encode the value of a form field you may use--data-urlencode.

If any of these options is used more than once on the same command line, the data pieces specified
will be merged together with a separating &-symbol. Thus, using ’-d name=daniel -d skill=lousy’
would generate a post chunk that looks like ’name=daniel&skill=lousy’.

If you start the data with the letter @, the rest should be a file name to read the data from, or - if
you want curl to read the data from stdin. The contents of the file must already be URL-encoded.
Multiple files can also be specified. Posting data from a file named ’foobar’ would thus be done
with --data @foobar.

-D, --dump-header <file>
Write the protocol headers to the specified file.

This option is handy to use when you want to store the headers that an HTTP site sends to you.
Cookies from the headers could then be read in a second curl invocation by using the-b, --cookie
option! The-c, --cookie-jaroption is however a better way to store cookies.

Curl 7.27.0 27 July 2012 4

curl(1) Curl Manual curl(1)

When used in FTP, the FTP server response lines are considered being "headers" and thus are
saved there.

If this option is used several times, the last one will be used.

--data-ascii <data>
See-d, --data.

--data-binary <data>
(HTTP) This posts data exactly as specified with no extra processing whatsoever.

If you start the data with the letter @, the rest should be a filename.Data is posted in a similar
manner as--data-asciidoes, except that newlines are preserved and conversions are never done.

If this option is used several times, the ones following the first will append data as described in-d,
--data.

--data-urlencode <data>
(HTTP) This posts data, similar to the other --data options with the exception that this performs
URL-encoding. (Added in 7.18.0)

To be CGI-compliant, the <data> part should begin with anamefollowed by a separator and a
content specification. The <data> part can be passed to curl using one of the following syntaxes:

content This will make curl URL-encode the content and pass that on. Just be careful so that the
content doesn’t contain any = or @ symbols, as that will then make the syntax match one
of the other cases below!

=content
This will make curl URL-encode the content and pass that on. The preceding = symbol is
not included in the data.

name=content
This will make curl URL-encode the content part and pass that on. Note that the name
part is expected to be URL-encoded already.

@filename
This will make curl load data from the given file (including any newlines), URL-encode
that data and pass it on in the POST.

name@filename
This will make curl load data from the given file (including any newlines), URL-encode
that data and pass it on in the POST. The name part gets an equal sign appended, result-
ing in name=urlencoded-file-content. Note that the name is expected to be URL-encoded
already.

--delegation LEVEL
SetLEVEL to tell the server what it is allowed to delegate when it comes to user credentials. Used
with GSS/kerberos.

none Don’t allow any delegation.

policy Delegates if and only if the OK-AS-DELEGATE flag is set in the Kerberos service ticket,
which is a matter of realm policy.

always Unconditionally allow the server to delegate.

--digest (HTTP) Enables HTTP Digest authentication. This is an authentication scheme that prevents the
password from being sent over the wire in clear text. Use this in combination with the normal-u,
--useroption to set user name and password. See also--ntlm, --negotiateand--anyauthfor related
options.

Curl 7.27.0 27 July 2012 5

curl(1) Curl Manual curl(1)

If this option is used several times, only the first one is used.

--disable-eprt
(FTP) Tell curl to disable the use of the EPRT and LPRT commands when doing active FTP trans-
fers. Curl will normally always first attempt to use EPRT, then LPRT before using PORT, but with
this option, it will use PORT right away. EPRT and LPRT are extensions to the original FTP proto-
col, and may not work on all servers, but they enable more functionality in a better way than the
traditional PORT command.

--eprt can be used to explicitly enable EPRT again and--no-eprt is an alias for--disable-eprt.

Disabling EPRT only changes the active behavior. If you want to switch to passive mode you need
to not use-P, --ftp-portor force it with--ftp-pasv.

--disable-epsv
(FTP) Tell curl to disable the use of the EPSV command when doing passive FTP transfers. Curl
will normally always first attempt to use EPSV before PASV, but with this option, it will not try
using EPSV.

--epsvcan be used to explicitly enable EPSV again and--no-epsvis an alias for--disable-epsv.

Disabling EPSV only changes the passive behavior. If you want to switch to active mode you need
to use-P, --ftp-port.

-e, --referer <URL>
(HTTP) Sends the "Referer Page" information to the HTTP server. This can also be set with the
-H, --headerflag of course. When used with-L, --locationyou can append ";auto" to the --referer
URL to make curl automatically set the previous URL when it follows a Location: header. The
";auto" string can be used alone, even if you don’t set an initial --referer.

If this option is used several times, the last one will be used.

-E, --cert <certificate[:password]>
(SSL) Tells curl to use the specified client certificate file when getting a file with HTTPS, FTPS or
another SSL-based protocol. The certificate must be in PEM format. If the optional password isn’t
specified, it will be queried for on the terminal. Note that this option assumes a "certificate" file
that is the private key and the private certificate concatenated! See--cert and--key to specify them
independently.

If curl is built against the NSS SSL library then this option can tell curl the nickname of the certifi-
cate to use within the NSS database defined by the environment variable SSL_DIR (or by default
/etc/pki/nssdb). If the NSS PEM PKCS#11 module (libnsspem.so) is available then PEM files may
be loaded. If you want to use a file from the current directory, please precede it with "./" prefix, in
order to avoid confusion with a nickname.

If this option is used several times, the last one will be used.

--engine <name>
Select the OpenSSL crypto engine to use for cipher operations. Use--engine listto print a list of
build-time supported engines. Note that not all (or none) of the engines may be available at run-
time.

--environment
(RISC OS ONLY) Sets a range of environment variables, using the names the-w option supports,
to allow easier extraction of useful information after having run curl.

--egd-file <file>
(SSL) Specify the path name to the Entropy Gathering Daemon socket. The socket is used to seed
the random engine for SSL connections. See also the--random-fileoption.

Curl 7.27.0 27 July 2012 6

curl(1) Curl Manual curl(1)

--cert-type <type>
(SSL) Tells curl what certificate type the provided certificate is in. PEM, DER and ENG are recog-
nized types. If not specified, PEM is assumed.

If this option is used several times, the last one will be used.

--cacert <CA certificate>
(SSL) Tells curl to use the specified certificate file to verify the peer. The file may contain multiple
CA certificates. The certificate(s) must be in PEM format. Normally curl is built to use a default
file for this, so this option is typically used to alter that default file.

curl recognizes the environment variable named ’CURL_CA_BUNDLE’ if it is set, and uses the
given path as a path to a CA cert bundle. This option overrides that variable.

The windows version of curl will automatically look for a CA certs file named ´curl-ca-bundle.crt´,
either in the same directory as curl.exe, or in the Current Working Directory, or in any folder along
your PATH.

If curl is built against the NSS SSL library then this option tells curl the nickname of the CA cer-
tificate to use within the NSS database defined by the environment variable SSL_DIR (or by
default /etc/pki/nssdb). If the NSS PEM PKCS#11 module (libnsspem.so) is available then PEM
files may be loaded.

If this option is used several times, the last one will be used.

--capath <CA certificate directory>
(SSL) Tells curl to use the specified certificate directory to verify the peer. Multiple paths can be
provided by separating them with ":" (e.g."path1:path2:path3"). The certificates must be in PEM
format, and if curl is built against OpenSSL, the directory must have been processed using the
c_rehash utility supplied with OpenSSL. Using--capath can allow OpenSSL-powered curl to
make SSL-connections much more efficiently than using--cacertif the --cacertfile contains many
CA certificates.

If this option is set, the default capath value will be ignored, and if it is used several times, the last
one will be used.

-f, --fail
(HTTP) Fail silently (no output at all) on server errors. This is mostly done to better enable scripts
etc to better deal with failed attempts. In normal cases when an HTTP server fails to deliver a doc-
ument, it returns an HTML document stating so (which often also describes why and more). This
flag will prevent curl from outputting that and return error 22.

This method is not fail-safe and there are occasions where non-successful response codes will slip
through, especially when authentication is involved (response codes 401 and 407).

-F, --form <name=content>
(HTTP) This lets curl emulate a filled-in form in which a user has pressed the submit button. This
causes curl to POST data using the Content-Type multipart/form-data according to RFC 2388.
This enables uploading of binary files etc. To force the ’content’ part to be a file, prefix the file
name with an @ sign. To just get the content part from a file, prefix the file name with the symbol
<. The difference between @ and < is then that @ makes a file get attached in the post as a file
upload, while the < makes a text field and just get the contents for that text field from a file.

Example, to send your password file to the server, where ’password’ is the name of the form-field
to which /etc/passwd will be the input:

curl -F password=@/etc/passwd www.mypasswords.com

Curl 7.27.0 27 July 2012 7

curl(1) Curl Manual curl(1)

To read content from stdin instead of a file, use - as the filename. This goes for both @ and < con-
structs.

You can also tell curl what Content-Type to use by using ’type=’, in a manner similar to:

curl -F "web=@index.html;type=text/html" url.com

or

curl -F "name=daniel;type=text/foo" url.com

You can also explicitly change the name field of a file upload part by setting filename=, like this:

curl -F "file=@localfile;filename=nameinpost" url.com

See further examples and details in the MANUAL.

This option can be used multiple times.

--ftp-account [data]
(FTP) When an FTP server asks for "account data" after user name and password has been pro-
vided, this data is sent off using the ACCT command. (Added in 7.13.0)

If this option is used several times, the last one will be used.

--ftp-alternative-to-user <command>
(FTP) If authenticating with the USER and PASS commands fails, send this command.When
connecting to Tumbleweed’s Secure Transport server over FTPS using a client certificate, using
"SITE AUTH" will tell the server to retrieve the username from the certificate. (Added in 7.15.5)

--ftp-create-dirs
(FTP/SFTP) When an FTP or SFTP URL/operation uses a path that doesn’t currently exist on the
server, the standard behavior of curl is to fail. Using this option, curl will instead attempt to create
missing directories.

--ftp-method [method]
(FTP) Control what method curl should use to reach a file on an FTP(S) server. The method argu-
ment should be one of the following alternatives:

multicwd
curl does a single CWD operation for each path part in the given URL. For deep hierar-
chies this means very many commands. This is how RFC 1738 says it should be done.
This is the default but the slowest behavior.

nocwd curl does no CWD at all. curl will do SIZE, RETR, STOR etc and give a full path to the
server for all these commands. This is the fastest behavior.

singlecwd
curl does one CWD with the full target directory and then operates on the file "normally"
(like in the multicwd case). This is somewhat more standards compliant than ’nocwd’ but
without the full penalty of ’multicwd’.

(Added in 7.15.1)

--ftp-pasv
(FTP) Use passive mode for the data connection. Passive is the internal default behavior, but using
this option can be used to override a previous-P/-ftp-portoption. (Added in 7.11.0)

If this option is used several times, only the first one is used. Undoing an enforced passive really
isn’t doable but you must then instead enforce the correct-P, --ftp-portagain.

Curl 7.27.0 27 July 2012 8

curl(1) Curl Manual curl(1)

Passive mode means that curl will try the EPSV command first and then PASV, unless--disable-
epsvis used.

--ftp-skip-pasv-ip
(FTP) Tell curl to not use the IP address the server suggests in its response to curl’s PASV com-
mand when curl connects the data connection. Instead curl will re-use the same IP address it
already uses for the control connection. (Added in 7.14.2)

This option has no effect if PORT, EPRT or EPSV is used instead of PASV.

--ftp-pret
(FTP) Tell curl to send a PRET command before PASV (and EPSV). Certain FTP servers, mainly
drftpd, require this non-standard command for directory listings as well as up and downloads in
PASV mode. (Added in 7.20.x)

--ftp-ssl-ccc
(FTP) Use CCC (Clear Command Channel) Shuts down the SSL/TLS layer after authenticating.
The rest of the control channel communication will be unencrypted. This allows NAT routers to
follow the FTP transaction. The default mode is passive. See --ftp-ssl-ccc-modefor other modes.
(Added in 7.16.1)

--ftp-ssl-ccc-mode [active/passive]
(FTP) Use CCC (Clear Command Channel) Sets the CCC mode. The passive mode will not initi-
ate the shutdown, but instead wait for the server to do it, and will not reply to the shutdown from
the server. The active mode initiates the shutdown and waits for a reply from the server. (Added in
7.16.2)

--ftp-ssl-control
(FTP) Require SSL/TLS for the FTP login, clear for transfer. Allows secure authentication, but
non-encrypted data transfers for efficiency. Fails the transfer if the server doesn’t support
SSL/TLS. (Addedin 7.16.0) that can still be used but will be removed in a future version.

--form-string <name=string>
(HTTP) Similar to--form except that the value string for the named parameter is used literally.
Leading ’@’ and ’<’ characters, and the ’;type=’ string in the value have no special meaning. Use
this in preference to--form if there’s any possibility that the string value may accidentally trigger
the ’@’ or ’<’ features of--form.

-g, --globoff
This option switches off the "URL globbing parser". When you set this option, you can specify
URLs that contain the letters {}[] without having them being interpreted by curl itself. Note that
these letters are not normal legal URL contents but they should be encoded according to the URI
standard.

-G, --get
When used, this option will make all data specified with-d, --dataor --data-binaryto be used in
an HTTP GET request instead of the POST request that otherwise would be used. The data will be
appended to the URL with a ’?’ separator.

If used in combination with -I, the POST data will instead be appended to the URL with a HEAD
request.

If this option is used several times, only the first one is used. This is because undoing a GET
doesn’t make sense, but you should then instead enforce the alternative method you prefer.

-H, --header <header>
(HTTP) Extra header to use when getting a web page. You may specify any number of extra head-
ers. Note that if you should add a custom header that has the same name as one of the internal ones
curl would use, your externally set header will be used instead of the internal one. This allows you
to make even trickier stuff than curl would normally do. You should not replace internally set

Curl 7.27.0 27 July 2012 9

curl(1) Curl Manual curl(1)

headers without knowing perfectly well what you’re doing. Remove an internal header by giving a
replacement without content on the right side of the colon, as in: -H "Host:". If you send the cus-
tom header with no-value then its header must be terminated with a semicolon, such as −H "X-
Custom-Header;" to send "X-Custom-Header:".

curl will make sure that each header you add/replace is sent with the proper end-of-line marker,
you should thusnot add that as a part of the header content: do not add newlines or carriage
returns, they will only mess things up for you.

See also the-A, --user-agent and-e, --refereroptions.

This option can be used multiple times to add/replace/remove multiple headers.

--hostpubmd5 <md5>
(SCP/SFTP) Pass a string containing 32 hexadecimal digits. The string should be the 128 bit MD5
checksum of the remote host’s public key, curl will refuse the connection with the host unless the
md5sums match. (Added in 7.17.1)

--ignore-content-length
(HTTP) Ignore the Content-Length header. This is particularly useful for servers running Apache
1.x, which will report incorrect Content-Length for files larger than 2 gigabytes.

-i, --include
(HTTP) Include the HTTP-header in the output. The HTTP-header includes things like server-
name, date of the document, HTTP-version and more...

-I, --head
(HTTP/FTP/FILE) Fetch the HTTP-header only! HTTP-servers feature the command HEAD
which this uses to get nothing but the header of a document. When used on an FTP or FILE file,
curl displays the file size and last modification time only.

--interface <name>
Perform an operation using a specified interface. You can enter interface name, IP address or host
name. An example could look like:

curl --interface eth0:1 http://www.netscape.com/

If this option is used several times, the last one will be used.

-j, --junk-session-cookies
(HTTP) When curl is told to read cookies from a given file, this option will make it discard all
"session cookies". This will basically have the same effect as if a new session is started. Typical
browsers always discard session cookies when they’re closed down.

-J, --remote-header-name
(HTTP) This option tells the-O, --remote-nameoption to use the server-specified Content-Dispo-
sition filename instead of extracting a filename from the URL.

-k, --insecure
(SSL) This option explicitly allows curl to perform "insecure" SSL connections and transfers. All
SSL connections are attempted to be made secure by using the CA certificate bundle installed by
default. This makes all connections considered "insecure" fail unless-k, --insecureis used.

See this online resource for further details:http://curl.haxx.se/docs/sslcerts.html

-K, --config <config file>
Specify which config file to read curl arguments from. The config file is a text file in which com-
mand line arguments can be written which then will be used as if they were written on the actual
command line. Options and their parameters must be specified on the same config file line, sepa-
rated by whitespace, colon, the equals sign or any combination thereof (however, the preferred

Curl 7.27.0 27 July 2012 10

curl(1) Curl Manual curl(1)

separator is the equals sign). If the parameter is to contain whitespace, the parameter must be
enclosed within quotes. Within double quotes, the following escape sequences are available: \\, \",
\t, \n, \r and \v. A backslash preceding any other letter is ignored. If the first column of a config
line is a ’#’ character, the rest of the line will be treated as a comment. Only write one option per
physical line in the config file.

Specify the filename to -K, --config as ’-’ to make curl read the file from stdin.

Note that to be able to specify a URL in the config file, you need to specify it using the--url
option, and not by simply writing the URL on its own line. So, it could look similar to this:

url = "http://curl.haxx.se/docs/"

Long option names can optionally be given in the config file without the initial double dashes.

When curl is invoked, it always (unless-q is used) checks for a default config file and uses it if
found. The default config file is checked for in the following places in this order:

1) curl tries to find the "home dir": It first checks for the CURL_HOME and then the HOME envi-
ronment variables. Failing that, it uses getpwuid() on UNIX-like systems (which returns the home
dir given the current user in your system). On Windows, it then checks for the APPDAT A variable,
or as a last resort the ’%USERPROFILE%\Application Data’.

2) On windows, if there is no _curlrc file in the home dir, it checks for one in the same dir the curl
executable is placed. On UNIX-like systems, it will simply try to load .curlrc from the determined
home dir.

--- Example file ---
this is a comment
url = "curl.haxx.se"
output = "curlhere.html"
user-agent = "superagent/1.0"

and fetch another URL too
url = "curl.haxx.se/docs/manpage.html"
-O
referer = "http://nowhereatall.com/"
--- End of example file ---

This option can be used multiple times to load multiple config files.

--keepalive-time <seconds>
This option sets the time a connection needs to remain idle before sending keepalive probes and
the time between individual keepalive probes. It is currently effective on operating systems offer-
ing the TCP_KEEPIDLE and TCP_KEEPINTVL socket options (meaning Linux, recent AIX,
HP-UX and more). This option has no effect if--no-keepaliveis used. (Added in 7.18.0)

If this option is used several times, the last one will be used. If unspecified, the option defaults to
60 seconds.

--key <key>
(SSL/SSH) Private key file name. Allows you to provide your private key in this separate file.

If this option is used several times, the last one will be used.

Curl 7.27.0 27 July 2012 11

curl(1) Curl Manual curl(1)

--key-type <type>
(SSL) Private key file type. Specify which type your--keyprovided private key is. DER, PEM, and
ENG are supported. If not specified, PEM is assumed.

If this option is used several times, the last one will be used.

--krb <level>
(FTP) Enable Kerberos authentication and use. The level must be entered and should be one of
’clear’, ’safe’, ’confidential’, or ’private’. Should you use a level that is not one of these, ’private’
will instead be used.

This option requires a library built with kerberos4 or GSSAPI (GSS-Negotiate) support. This is
not very common. Use-V, --versionto see if your curl supports it.

If this option is used several times, the last one will be used.

-l, --list-only
(FTP) When listing an FTP directory, this switch forces a name-only view. Especially useful if
you want to machine-parse the contents of an FTP directory since the normal directory view
doesn’t use a standard look or format.

This option causes an FTP NLST command to be sent. Some FTP servers list only files in their
response to NLST; they do not include subdirectories and symbolic links.

-L, --location
(HTTP/HTTPS) If the server reports that the requested page has moved to a different location
(indicated with a Location: header and a 3XX response code), this option will make curl redo the
request on the new place. If used together with-i, --include or -I, --head, headers from all
requested pages will be shown. When authentication is used, curl only sends its credentials to the
initial host. If a redirect takes curl to a different host, it won’t be able to intercept the user+pass-
word. See also--location-trustedon how to change this. You can limit the amount of redirects to
follow by using the--max-redirsoption.

When curl follows a redirect and the request is not a plain GET (for example POST or PUT), it
will do the following request with a GET if the HTTP response was 301, 302, or 303. If the
response code was any other 3xx code, curl will re-send the following request using the same
unmodified method.

--libcurl <file>
Append this option to any ordinary curl command line, and you will get a libcurl-using C source
code written to the file that does the equivalent of what your command-line operation does!

If this option is used several times, the last given file name will be used. (Added in 7.16.1)

--limit-rate <speed>
Specify the maximum transfer rate you want curl to use. This feature is useful if you have a lim-
ited pipe and you’d like your transfer not to use your entire bandwidth.

The given speed is measured in bytes/second, unless a suffix is appended. Appending ’k’ or ’K’
will count the number as kilobytes, ’m’ or M’ makes it megabytes, while ’g’ or ’G’ makes it giga-
bytes. Examples: 200K, 3m and 1G.

The given rate is the average speed counted during the entire transfer. It means that curl might use
higher transfer speeds in short bursts, but over time it uses no more than the given rate.

If you also use the-Y, --speed-limitoption, that option will take precedence and might cripple the

Curl 7.27.0 27 July 2012 12

curl(1) Curl Manual curl(1)

rate-limiting slightly, to help keeping the speed-limit logic working.

If this option is used several times, the last one will be used.

--local-port <num>[-num]
Set a preferred number or range of local port numbers to use for the connection(s).Note that port
numbers by nature are a scarce resource that will be busy at times so setting this range to some-
thing too narrow might cause unnecessary connection setup failures. (Added in 7.15.2)

--location-trusted
(HTTP/HTTPS) Like -L, --location, but will allow sending the name + password to all hosts that
the site may redirect to. This may or may not introduce a security breach if the site redirects you to
a site to which you’ll send your authentication info (which is plaintext in the case of HTTP Basic
authentication).

-m, --max-time <seconds>
Maximum time in seconds that you allow the whole operation to take. Thisis useful for prevent-
ing your batch jobs from hanging for hours due to slow networks or links going down. Seealso
the--connect-timeoutoption.

If this option is used several times, the last one will be used.

--mail-auth <address>
(SMTP) Specify a single address. This will be used to specify the authentication address (identity)
of a submitted message that is being relayed to another server.

(Added in 7.25.0)

--mail-from <address>
(SMTP) Specify a single address that the given mail should get sent from.

(Added in 7.20.0)

--max-filesize <bytes>
Specify the maximum size (in bytes) of a file to download. If the file requested is larger than this
value, the transfer will not start and curl will return with exit code 63.

NOTE: The file size is not always known prior to download, and for such files this option has no
effect even if the file transfer ends up being larger than this given limit. This concerns both FTP
and HTTP transfers.

--mail-rcpt <address>
(SMTP) Specify a single address that the given mail should get sent to. This option can be used
multiple times to specify many recipients.

(Added in 7.20.0)

--max-redirs <num>
Set maximum number of redirection-followings allowed. If-L, --location is used, this option can
be used to prevent curl from following redirections "in absurdum". By default, the limit is set to 50
redirections. Set this option to -1 to make it limitless.

If this option is used several times, the last one will be used.

--metalink
This option can tell curl to parse and process a given URI as Metalink file (both version 3 and 4
(RFC 5854) are supported) and make use of the mirrors listed within for failover if there are errors
(such as the file or server not being available). It will also verify the hash of the file after the down-
load completes. The Metalink file itself is downloaded and processed in memory and not stored in
the local file system.

Curl 7.27.0 27 July 2012 13

curl(1) Curl Manual curl(1)

Example to use a remote Metalink file:

curl --metalink http://www.example.com/example.metalink

To use a Metalink file in the local file system, use FILE protocol (file://):

curl --metalink file://example.metalink

Please note that if FILE protocol is disabled, there is no way to use a local Metalink file at the time
of this writing. Also note that if--metalink and --include are used together, --include will be
ignored. This is because including headers in the response will break Metalink parser and if the
headers are included in the file described in Metalink file, hash check will fail.

(Added in 7.27.0, if built against the libmetalink library.)

-n, --netrc
Makes curl scan the.netrc (_netrcon Windows) file in the user’s home directory for login name
and password. This is typically used for FTP on UNIX. If used with HTTP, curl will enable user
authentication. Seenetrc(4) or ftp(1) for details on the file format. Curl will not complain if that
file doesn’t hav ethe right permissions (it should not be either world- or group-readable). The envi-
ronment variable "HOME" is used to find the home directory.

A quick and very simple example of how to setup a.netrc to allow curl to FTP to the machine
host.domain.com with user name ’myself’ and password ’secret’ should look similar to:

machine host.domain.com login myself password secret

-N, --no-buffer
Disables the buffering of the output stream. In normal work situations, curl will use a standard
buffered output stream that will have the effect that it will output the data in chunks, not necessar-
ily exactly when the data arrives. Usingthis option will disable that buffering.

Note that this is the negated option name documented. You can thus use--buffer to enforce the
buffering.

--netrc-file
This option is similar to--netrc, except that you provide the path (absolute or relative) to the netrc
file that Curl should use.You can only specify one netrc file per invocation. If several --netrc-file
options are provided, only thelast onewill be used. (Added in 7.21.5)

This option overrides any use of --netrc as they are mutually exclusive. It will also abide by
--netrc-optionalif specified.

--netrc-optional
Very similar to--netrc, but this option makes the .netrc usageoptional and not mandatory as the
--netrcoption does.

--negotiate
(HTTP) Enables GSS-Negotiate authentication. The GSS-Negotiate method was designed by Mi-
crosoft and is used in their web applications. It is primarily meant as a support for Kerberos5
authentication but may be also used along with another authentication method. For more informa-
tion see IETF draft draft-brezak-spnego-http-04.txt.

If you want to enable Negotiate for your proxy authentication, then use--proxy-negotiate.

Curl 7.27.0 27 July 2012 14

curl(1) Curl Manual curl(1)

This option requires a library built with GSSAPI support. This is not very common. Use-V, --ver-
sionto see if your version supports GSS-Negotiate.

When using this option, you must also provide a fake-u, --useroption to activate the authentica-
tion code properly. Sending a ’-u :’ is enough as the user name and password from the-u option
aren’t actually used.

If this option is used several times, only the first one is used.

--no-keepalive
Disables the use of keepalive messages on the TCP connection, as by default curl enables them.

Note that this is the negated option name documented. You can thus use--keepaliveto enforce
keepalive.

--no-sessionid
(SSL) Disable curl’s use of SSL session-ID caching. By default all transfers are done using the
cache. Note that while nothing should ever get hurt by attempting to reuse SSL session-IDs, there
seem to be broken SSL implementations in the wild that may require you to disable this in order
for you to succeed. (Added in 7.16.0)

Note that this is the negated option name documented. You can thus use--sessionidto enforce ses-
sion-ID caching.

--noproxy <no-proxy-list>
Comma-separated list of hosts which do not use a proxy, if one is specified. The only wildcard is
a single * character, which matches all hosts, and effectively disables the proxy. Each name in this
list is matched as either a domain which contains the hostname, or the hostname itself. For exam-
ple, local.com would match local.com, local.com:80, and www.local.com, but not www.notlo-
cal.com. (Addedin 7.19.4).

--ntlm (HTTP) Enables NTLM authentication. The NTLM authentication method was designed by Mi-
crosoft and is used by IIS web servers. It is a proprietary protocol, reverse-engineered by clever
people and implemented in curl based on their efforts. This kind of behavior should not be
endorsed, you should encourage everyone who uses NTLM to switch to a public and documented
authentication method instead, such as Digest.

If you want to enable NTLM for your proxy authentication, then use--proxy-ntlm.

This option requires a library built with SSL support. Use-V, --versionto see if your curl supports
NTLM.

If this option is used several times, only the first one is used.

-o, --output <file>
Write output to <file> instead of stdout. If you are using {} or [] to fetch multiple documents, you
can use ’#’ followed by a number in the <file> specifier. That variable will be replaced with the
current string for the URL being fetched. Like in:

curl http://{one,two}.site.com -o "file_#1.txt"

or use several variables like:

curl http://{site,host}.host[1-5].com -o "#1_#2"

You may use this option as many times as the number of URLs you have.

Curl 7.27.0 27 July 2012 15

curl(1) Curl Manual curl(1)

See also the--create-dirsoption to create the local directories dynamically. Specifying the output
as ’-’ (a single dash) will force the output to be done to stdout.

-O, --remote-name
Write output to a local file named like the remote file we get. (Only the file part of the remote file
is used, the path is cut off.)

The remote file name to use for saving is extracted from the given URL, nothing else.

Consequentially, the file will be saved in the current working directory. If you want the file saved
in a different directory, make sure you change current working directory before you invoke curl
with the-O, --remote-nameflag!

You may use this option as many times as the number of URLs you have.

-p, --proxytunnel
When an HTTP proxy is used (-x, --proxy), this option will cause non-HTTP protocols to attempt
to tunnel through the proxy instead of merely using it to do HTTP-like operations. The tunnel
approach is made with the HTTP proxy CONNECT request and requires that the proxy allows
direct connect to the remote port number curl wants to tunnel through to.

-P, --ftp-port <address>
(FTP) Reverses the default initiator/listener roles when connecting with FTP. This switch makes
curl use active mode. In practice, curl then tells the server to connect back to the client’s specified
address and port, while passive mode asks the server to setup an IP address and port for it to con-
nect to. <address> should be one of:

interface
i.e "eth0" to specify which interface’s IP address you want to use (Unix only)

IP address
i.e "192.168.10.1" to specify the exact IP address

host name
i.e "my.host.domain" to specify the machine

- make curl pick the same IP address that is already used for the control connection

If this option is used several times, the last one will be used. Disable the use of PORT with --ftp-pasv. Dis-
able the attempt to use the EPRT command instead of PORT by using --disable-eprt. EPRT is really
PORT++.

Starting in 7.19.5, you can append ":[start]-[end]" to the right of the address, to tell curl what TCP port
range to use. That means you specify a port range, from a lower to a higher number. A single number works
as well, but do note that it increases the risk of failure since the port may not be available.

--pass <phrase>
(SSL/SSH) Passphrase for the private key

If this option is used several times, the last one will be used.

--post301
(HTTP) Tells curl to respect RFC 2616/10.3.2 and not convert POST requests into GET requests
when following a 301 redirection. The non-RFC behaviour is ubiquitous in web browsers, so curl
does the conversion by default to maintain consistency. Howev er, a server may require a POST to
remain a POST after such a redirection. This option is meaningful only when using-L, --location
(Added in 7.17.1)

Curl 7.27.0 27 July 2012 16

curl(1) Curl Manual curl(1)

--post302
(HTTP) Tells curl to respect RFC 2616/10.3.2 and not convert POST requests into GET requests
when following a 302 redirection. The non-RFC behaviour is ubiquitous in web browsers, so curl
does the conversion by default to maintain consistency. Howev er, a server may require a POST to
remain a POST after such a redirection. This option is meaningful only when using-L, --location
(Added in 7.19.1)

--proto <protocols>
Tells curl to use the listed protocols for its initial retrieval. Protocols are evaluated left to right, are
comma separated, and are each a protocol name or ’all’, optionally prefixed by zero or more modi-
fiers. Available modifiers are:

+ Permit this protocol in addition to protocols already permitted (this is the default if no modifier
is used).

- Deny this protocol, removing it from the list of protocols already permitted.

= Permit only this protocol (ignoring the list already permitted), though subject to later modifica-
tion by subsequent entries in the comma separated list.

For example:

--proto -ftps uses the default protocols, but disables ftps

--proto -all,https,+http
only enables http and https

--proto =http,https
also only enables http and https

Unknown protocols produce a warning. This allows scripts to safely rely on being able to disable
potentially dangerous protocols, without relying upon support for that protocol being built into
curl to avoid an error.

This option can be used multiple times, in which case the effect is the same as concatenating the
protocols into one instance of the option.

(Added in 7.20.2)

--proto-redir <protocols>
Tells curl to use the listed protocols after a redirect. See --proto for how protocols are represented.

(Added in 7.20.2)

--proxy-anyauth
Tells curl to pick a suitable authentication method when communicating with the given proxy. This
might cause an extra request/response round-trip. (Added in 7.13.2)

--proxy-basic
Tells curl to use HTTP Basic authentication when communicating with the given proxy. Use
--basic for enabling HTTP Basic with a remote host. Basic is the default authentication method
curl uses with proxies.

--proxy-digest
Tells curl to use HTTP Digest authentication when communicating with the given proxy. Use
--digestfor enabling HTTP Digest with a remote host.

--proxy-negotiate
Tells curl to use HTTP Negotiate authentication when communicating with the given proxy. Use
--negotiatefor enabling HTTP Negotiate with a remote host. (Added in 7.17.1)

Curl 7.27.0 27 July 2012 17

curl(1) Curl Manual curl(1)

--proxy-ntlm
Tells curl to use HTTP NTLM authentication when communicating with the given proxy. Use
--ntlm for enabling NTLM with a remote host.

--proxy1.0 <proxyhost[:port]>
Use the specified HTTP 1.0 proxy. If the port number is not specified, it is assumed at port 1080.

The only difference between this and the HTTP proxy option (-x, --proxy), is that attempts to use
CONNECT through the proxy will specify an HTTP 1.0 protocol instead of the default HTTP 1.1.

--pubkey <key>
(SSH) Public key file name. Allows you to provide your public key in this separate file.

If this option is used several times, the last one will be used.

-q If used as the first parameter on the command line, thecurlrc config file will not be read and used.
See the-K, --configfor details on the default config file search path.

-Q, --quote <command>
(FTP/SFTP) Send an arbitrary command to the remote FTP or SFTP server. Quote commands are
sent BEFORE the transfer takes place (just after the initial PWD command in an FTP transfer, to
be exact). To make commands take place after a successful transfer, prefix them with a dash ’-’.
To make commands be sent after curl has changed the working directory, just before the transfer
command(s), prefix the command with a ’+’ (this is only supported for FTP). You may specify any
number of commands. If the server returns failure for one of the commands, the entire operation
will be aborted. You must send syntactically correct FTP commands as RFC 959 defines to FTP
servers, or one of the commands listed below to SFTP servers. Thisoption can be used multiple
times. When speaking to an FTP server, prefix the command with an asterisk (*) to make curl con-
tinue even if the command fails as by default curl will stop at first failure.

SFTP is a binary protocol. Unlike for FTP, curl interprets SFTP quote commands itself before
sending them to the server. File names may be quoted shell-style to embed spaces or special char-
acters. Following is the list of all supported SFTP quote commands:

chgrp group file
The chgrp command sets the group ID of the file named by the file operand to the group
ID specified by the group operand. The group operand is a decimal integer group ID.

chmod mode file
The chmod command modifies the file mode bits of the specified file. The mode operand
is an octal integer mode number.

chown user file
The chown command sets the owner of the file named by the file operand to the user ID
specified by the user operand. The user operand is a decimal integer user ID.

ln source_file target_file
The ln and symlink commands create a symbolic link at the target_file location pointing
to the source_file location.

mkdir directory_name
The mkdir command creates the directory named by the directory_name operand.

pwd The pwd command returns the absolute pathname of the current working directory.

rename source target
The rename command renames the file or directory named by the source operand to the
destination path named by the target operand.

rm file The rm command removes the file specified by the file operand.

Curl 7.27.0 27 July 2012 18

curl(1) Curl Manual curl(1)

rmdir directory
The rmdir command removes the directory entry specified by the directory operand, pro-
vided it is empty.

symlink source_file target_file
See ln.

-r, --range <range>
(HTTP/FTP/SFTP/FILE) Retrieve a byte range (i.e a partial document) from a HTTP/1.1, FTP or
SFTP server or a local FILE. Ranges can be specified in a number of ways.

0-499 specifies the first 500 bytes

500-999 specifies the second 500 bytes

-500 specifies the last 500 bytes

9500- specifies the bytes from offset 9500 and forward

0-0,-1 specifies the first and last byte only(*)(H)

500-700,600-799
specifies 300 bytes from offset 500(H)

100-199,500-599
specifies two separate 100-byte ranges(*)(H)

(*) = NOTE that this will cause the server to reply with a multipart response!

Only digit characters (0-9) are valid in the ’start’ and ’stop’ fields of the ’start-stop’ range syntax. If a non-
digit character is given in the range, the server’s response will be unspecified, depending on the server’s
configuration.

You should also be aware that many HTTP/1.1 servers do not have this feature enabled, so that when you
attempt to get a range, you’ll instead get the whole document.

FTP and SFTP range downloads only support the simple ’start-stop’ syntax (optionally with one of the
numbers omitted). FTP use depends on the extended FTP command SIZE.

If this option is used several times, the last one will be used.

-R, --remote-time
When used, this will make curl attempt to figure out the timestamp of the remote file, and if that is
available make the local file get that same timestamp.

--random-file <file>
(SSL) Specify the path name to file containing what will be considered as random data. The data is
used to seed the random engine for SSL connections. See also the--egd-fileoption.

--raw (HTTP) When used, it disables all internal HTTP decoding of content or transfer encodings and
instead makes them passed on unaltered, raw. (Added in 7.16.2)

--remote-name-all
This option changes the default action for all given URLs to be dealt with as if-O, --remote-name
were used for each one. So if you want to disable that for a specific URL after--remote-name-all
has been used, you must use "-o -" or--no-remote-name. (Added in 7.19.0)

--resolve <host:port:address>
Provide a custom address for a specific host and port pair. Using this, you can make the curl
requests(s) use a specified address and prevent the otherwise normally resolved address to be used.
Consider it a sort of /etc/hosts alternative provided on the command line. The port number should
be the number used for the specific protocol the host will be used for. It means you need several
entries if you want to provide address for the same host but different ports.

Curl 7.27.0 27 July 2012 19

curl(1) Curl Manual curl(1)

This option can be used many times to add many host names to resolve.

(Added in 7.21.3)

--retry <num>
If a transient error is returned when curl tries to perform a transfer, it will retry this number of
times before giving up. Setting the number to 0 makes curl do no retries (which is the default).
Transient error means either: a timeout, an FTP 4xx response code or an HTTP 5xx response code.

When curl is about to retry a transfer, it will first wait one second and then for all forthcoming
retries it will double the waiting time until it reaches 10 minutes which then will be the delay
between the rest of the retries.By using--retry-delayyou disable this exponential backoff algo-
rithm. See also--retry-max-timeto limit the total time allowed for retries. (Added in 7.12.3)

If this option is used several times, the last one will be used.

--retry-delay <seconds>
Make curl sleep this amount of time before each retry when a transfer has failed with a transient
error (it changes the default backoff time algorithm between retries). This option is only interest-
ing if --retry is also used. Setting this delay to zero will make curl use the default backoff time.
(Added in 7.12.3)

If this option is used several times, the last one will be used.

--retry-max-time <seconds>
The retry timer is reset before the first transfer attempt. Retries will be done as usual (see--retry)
as long as the timer hasn’t reached this given limit. Notice that if the timer hasn’t reached the limit,
the request will be made and while performing, it may take longer than this given time period. To
limit a single request´s maximum time, use-m, --max-time. Set this option to zero to not timeout
retries. (Added in 7.12.3)

If this option is used several times, the last one will be used.

-s, --silent
Silent or quiet mode. Don’t show progress meter or error messages. Makes Curl mute.

-S, --show-error
When used with-s it makes curl show an error message if it fails.

--ssl (FTP, POP3, IMAP, SMTP) Try to use SSL/TLS for the connection.Reverts to a non-secure con-
nection if the server doesn’t support SSL/TLS. See also--ftp-ssl-controland--ssl-reqdfor differ-
ent levels of encryption required. (Added in 7.20.0)

This option was formerly known as--ftp-ssl(Added in 7.11.0). That option name can still be used
but will be removed in a future version.

--ssl-reqd
(FTP, POP3, IMAP, SMTP) Require SSL/TLS for the connection.Terminates the connection if
the server doesn’t support SSL/TLS. (Added in 7.20.0)

This option was formerly known as--ftp-ssl-reqd(added in 7.15.5). That option name can still be
used but will be removed in a future version.

--ssl-allow-beast
(SSL) This option tells curl to not work around a security flaw in the SSL3 and TLS1.0 protocols
known as BEAST. If this option isn’t used, the SSL layer may use work-arounds known to cause
interoperability problems with some older SSL implementations. WARNING: this option loosens
the SSL security, and by using this flag you ask for exactly that. (Added in 7.25.0)

Curl 7.27.0 27 July 2012 20

curl(1) Curl Manual curl(1)

--socks4 <host[:port]>
Use the specified SOCKS4 proxy. If the port number is not specified, it is assumed at port 1080.
(Added in 7.15.2)

This option overrides any previous use of-x, --proxy, as they are mutually exclusive.

Since 7.21.7, this option is superfluous since you can specify a socks4 proxy with-x, --proxyusing
a socks4:// protocol prefix.

If this option is used several times, the last one will be used.

--socks4a <host[:port]>
Use the specified SOCKS4a proxy. If the port number is not specified, it is assumed at port 1080.
(Added in 7.18.0)

This option overrides any previous use of-x, --proxy, as they are mutually exclusive.

Since 7.21.7, this option is superfluous since you can specify a socks4a proxy with-x, --proxy
using a socks4a:// protocol prefix.

If this option is used several times, the last one will be used.

--socks5-hostname <host[:port]>
Use the specified SOCKS5 proxy (and let the proxy resolve the host name). If the port number is
not specified, it is assumed at port 1080. (Added in 7.18.0)

This option overrides any previous use of-x, --proxy, as they are mutually exclusive.

Since 7.21.7, this option is superfluous since you can specify a socks5 hostname proxy with-x,
--proxyusing a socks5h:// protocol prefix.

If this option is used several times, the last one will be used. (This option was previously wrongly
documented and used as --socks without the number appended.)

--socks5 <host[:port]>
Use the specified SOCKS5 proxy - but resolve the host name locally. If the port number is not
specified, it is assumed at port 1080.

This option overrides any previous use of-x, --proxy, as they are mutually exclusive.

Since 7.21.7, this option is superfluous since you can specify a socks5 proxy with-x, --proxyusing
a socks5:// protocol prefix.

If this option is used several times, the last one will be used. (This option was previously wrongly
documented and used as --socks without the number appended.)

This option (as well as--socks4) does not work with IPV6, FTPS or LDAP.

--socks5-gssapi-service <servicename>
The default service name for a socks server is rcmd/server-fqdn. This option allows you to change
it.

Examples: --socks5 proxy-name--socks5-gssapi-servicesockd would use sockd/proxy-name
--socks5 proxy-name--socks5-gssapi-servicesockd/real-name would use sockd/real-name for
cases where the proxy-name does not match the principal name. (Added in 7.19.4).

Curl 7.27.0 27 July 2012 21

curl(1) Curl Manual curl(1)

--socks5-gssapi-nec
As part of the gssapi negotiation a protection mode is negotiated. RFC 1961 says in section 4.3/4.4
it should be protected, but the NEC reference implementation does not.The option--socks5-gss-
api-necallows the unprotected exchange of the protection mode negotiation. (Added in 7.19.4).

--stderr <file>
Redirect all writes to stderr to the specified file instead. If the file name is a plain ’-’, it is instead
written to stdout.

If this option is used several times, the last one will be used.

-t, --telnet-option <OPT=val>
Pass options to the telnet protocol. Supported options are:

TTYPE=<term> Sets the terminal type.

XDISPLOC=<X display> Sets the X display location.

NEW_ENV=<var,val> Sets an environment variable.

-T, --upload-file <file>
This transfers the specified local file to the remote URL. If there is no file part in the specified
URL, Curl will append the local file name. NOTE that you must use a trailing / on the last direc-
tory to really prove to Curl that there is no file name or curl will think that your last directory name
is the remote file name to use. That will most likely cause the upload operation to fail. If this is
used on an HTTP(S) server, the PUT command will be used.

Use the file name "-" (a single dash) to use stdin instead of a given file. Alternately, the file name
"." (a single period) may be specified instead of "-" to use stdin in non-blocking mode to allow
reading server output while stdin is being uploaded.

You can specify one -T for each URL on the command line. Each -T + URL pair specifies what to
upload and to where. curl also supports "globbing" of the -T argument, meaning that you can
upload multiple files to a single URL by using the same URL globbing style supported in the
URL, like this:

curl -T "{file1,file2}" http://www.uploadtothissite.com

or even

curl -T "img[1-1000].png" ftp://ftp.picturemania.com/upload/

--tcp-nodelay
Turn on the TCP_NODELAY option. See thecurl_easy_setopt(3)man page for details about this
option. (Added in 7.11.2)

--tftp-blksize <value>
(TFTP) Set TFTP BLKSIZE option (must be >512). This is the block size that curl will try to use
when transferring data to or from a TFTP server. By default 512 bytes will be used.

If this option is used several times, the last one will be used.

(Added in 7.20.0)

--tlsauthtype <authtype>
Set TLS authentication type. Currently, the only supported option is "SRP", for TLS-SRP (RFC
5054). If --tlsuserand--tlspasswordare specified but --tlsauthtypeis not, then this option defaults
to "SRP". (Added in 7.21.4)

Curl 7.27.0 27 July 2012 22

curl(1) Curl Manual curl(1)

--tlsuser <user>
Set username for use with the TLS authentication method specified with--tlsauthtype. Requires
that--tlspasswordalso be set. (Added in 7.21.4)

--tlspassword <password>
Set password for use with the TLS authentication method specified with--tlsauthtype. Requires
that--tlsuseralso be set. (Added in 7.21.4)

--tr-encoding
(HTTP) Request a compressed Transfer-Encoding response using one of the algorithms curl sup-
ports, and uncompress the data while receiving it.

(Added in 7.21.6)

--trace <file>
Enables a full trace dump of all incoming and outgoing data, including descriptive information, to
the given output file. Use "-" as filename to have the output sent to stdout.

This option overrides previous uses of-v, --verboseor --trace-ascii.

If this option is used several times, the last one will be used.

--trace-ascii <file>
Enables a full trace dump of all incoming and outgoing data, including descriptive information, to
the given output file. Use "-" as filename to have the output sent to stdout.

This is very similar to--trace, but leaves out the hex part and only shows the ASCII part of the
dump. It makes smaller output that might be easier to read for untrained humans.

This option overrides previous uses of-v, --verboseor --trace.

If this option is used several times, the last one will be used.

--trace-time
Prepends a time stamp to each trace or verbose line that curl displays. (Added in 7.14.0)

-u, --user <user:password>
Specify the user name and password to use for server authentication. Overrides-n, --netrc and
--netrc-optional.

If you just give the user name (without entering a colon) curl will prompt for a password.

If you use an SSPI-enabled curl binary and do NTLM authentication, you can force curl to pick up
the user name and password from your environment by simply specifying a single colon with this
option: "-u :".

If this option is used several times, the last one will be used.

-U, --proxy-user <user:password>
Specify the user name and password to use for proxy authentication.

If you use an SSPI-enabled curl binary and do NTLM authentication, you can force curl to pick up
the user name and password from your environment by simply specifying a single colon with this
option: "-U :".

If this option is used several times, the last one will be used.

Curl 7.27.0 27 July 2012 23

curl(1) Curl Manual curl(1)

--url <URL>
Specify a URL to fetch. This option is mostly handy when you want to specify URL(s) in a config
file.

This option may be used any number of times. To control where this URL is written, use the-o,
--outputor the-O, --remote-nameoptions.

-v, --verbose
Makes the fetching more verbose/talkative. Mostly useful for debugging. A line starting with ’>’
means "header data" sent by curl, ’<’ means "header data" received by curl that is hidden in nor-
mal cases, and a line starting with ’*’ means additional info provided by curl.

Note that if you only want HTTP headers in the output,-i, --includemight be the option you’re
looking for.

If you think this option still doesn’t giv e you enough details, consider using--traceor --trace-ascii
instead.

This option overrides previous uses of--trace-asciior --trace.

Use-s, --silentto make curl quiet.

-w, --write-out <format>
Defines what to display on stdout after a completed and successful operation. The format is a
string that may contain plain text mixed with any number of variables. The string can be specified
as "string", to get read from a particular file you specify it "@filename" and to tell curl to read the
format from stdin you write "@-".

The variables present in the output format will be substituted by the value or text that curl thinks
fit, as described below. All variables are specified as %{variable_name} and to output a normal %
you just write them as %%. You can output a newline by using \n, a carriage return with \r and a
tab space with \t.

NOTE: The %-symbol is a special symbol in the win32-environment, where all occurrences of %
must be doubled when using this option.

The variables available are:

content_type The Content-Type of the requested document, if there was any.

filename_effective
The ultimate filename that curl writes out to. This is only meaningful if curl is
told to write to a file with the--remote-nameor --outputoption. It’s most useful
in combination with the--remote-header-nameoption. (Added in 7.25.1)

ftp_entry_path The initial path curl ended up in when logging on to the remote FTP server.
(Added in 7.15.4)

http_code The numerical response code that was found in the last retrieved HTTP(S) or
FTP(s) transfer. In 7.18.2 the aliasresponse_codewas added to show the same
info.

http_connect The numerical code that was found in the last response (from a proxy) to a curl
CONNECT request. (Added in 7.12.4)

num_connects Number of new connects made in the recent transfer. (Added in 7.12.3)

num_redirects Number of redirects that were followed in the request. (Added in 7.12.3)

Curl 7.27.0 27 July 2012 24

curl(1) Curl Manual curl(1)

redirect_url When an HTTP request was made without -L to follow redirects, this variable
will show the actual URL a redirectwouldtake you to. (Added in 7.18.2)

size_download The total amount of bytes that were downloaded.

size_header The total amount of bytes of the downloaded headers.

size_request The total amount of bytes that were sent in the HTTP request.

size_upload The total amount of bytes that were uploaded.

speed_download
The average download speed that curl measured for the complete download.
Bytes per second.

speed_upload The average upload speed that curl measured for the complete upload. Bytes per
second.

ssl_verify_result The result of the SSL peer certificate verification that was requested. 0 means
the verification was successful. (Added in 7.19.0)

time_appconnect
The time, in seconds, it took from the start until the SSL/SSH/etc connect/hand-
shake to the remote host was completed. (Added in 7.19.0)

time_connect The time, in seconds, it took from the start until the TCP connect to the remote
host (or proxy) was completed.

time_namelookup
The time, in seconds, it took from the start until the name resolving was com-
pleted.

time_pretransfer
The time, in seconds, it took from the start until the file transfer was just about
to begin. This includes all pre-transfer commands and negotiations that are spe-
cific to the particular protocol(s) involved.

time_redirect The time, in seconds, it took for all redirection steps include name lookup, con-
nect, pretransfer and transfer before the final transaction was started. time_redi-
rect shows the complete execution time for multiple redirections. (Added in
7.12.3)

time_starttransfer
The time, in seconds, it took from the start until the first byte was just about to
be transferred. This includes time_pretransfer and also the time the server
needed to calculate the result.

time_total The total time, in seconds, that the full operation lasted. The time will be dis-
played with millisecond resolution.

url_effective The URL that was fetched last. This is most meaningful if you’ve told curl to
follow location: headers.

If this option is used several times, the last one will be used.

-x, --proxy <[protocol://][user:password@]proxyhost[:port]>
Use the specified HTTP proxy. If the port number is not specified, it is assumed at port 1080.

This option overrides existing environment variables that set the proxy to use. If there’s an envi-
ronment variable setting a proxy, you can set proxy to "" to override it.

All operations that are performed over an HTTP proxy will transparently be converted to HTTP. It
means that certain protocol specific operations might not be available. This is not the case if you
can tunnel through the proxy, as one with the-p, --proxytunneloption.

Curl 7.27.0 27 July 2012 25

curl(1) Curl Manual curl(1)

User and password that might be provided in the proxy string are URL decoded by curl. This
allows you to pass in special characters such as @ by using %40 or pass in a colon with %3a.

The proxy host can be specified the exact same way as the proxy environment variables, including
the protocol prefix (http://) and the embedded user + password.

From 7.21.7, the proxy string may be specified with a protocol:// prefix to specify alternative
proxy protocols. Use socks4://, socks4a://, socks5:// or socks5h:// to request the specific SOCKS
version to be used. No protocol specified, http:// and all others will be treated as HTTP proxies.

If this option is used several times, the last one will be used.

-X, --request <command>
(HTTP) Specifies a custom request method to use when communicating with the HTTP server.
The specified request will be used instead of the method otherwise used (which defaults to GET).
Read the HTTP 1.1 specification for details and explanations. Common additional HTTP requests
include PUT and DELETE, but related technologies like WebDAV offers PROPFIND, COPY,
MOVE and more.

(FTP) Specifies a custom FTP command to use instead of LIST when doing file lists with FTP.

If this option is used several times, the last one will be used.

--xattr When saving output to a file, this option tells curl to store certain file metadata in extened file
attributes. Currently, the URL is stored in the xdg.origin.url attribute and, for HTTP, the content
type is stored in the mime_type attribute. If the file system does not support extended attributes, a
warning is issued.

-y, --speed-time <time>
If a download is slower than speed-limit bytes per second during a speed-time period, the down-
load gets aborted. If speed-time is used, the default speed-limit will be 1 unless set with-Y.

This option controls transfers and thus will not affect slow connects etc. If this is a concern for
you, try the--connect-timeoutoption.

If this option is used several times, the last one will be used.

-Y, --speed-limit <speed>
If a download is slower than this given speed (in bytes per second) for speed-time seconds it gets
aborted. speed-time is set with-y and is 30 if not set.

If this option is used several times, the last one will be used.

-z/--time-cond <date expression>|<file>
(HTTP/FTP) Request a file that has been modified later than the given time and date, or one that
has been modified before that time. The <date expression> can be all sorts of date strings or if it
doesn’t match any internal ones, it is taken as a filename and tries to get the modification date
(mtime) from <file> instead. See thecurl_getdate(3)man pages for date expression details.

Start the date expression with a dash (-) to make it request for a document that is older than the
given date/time, default is a document that is newer than the specified date/time.

If this option is used several times, the last one will be used.

Curl 7.27.0 27 July 2012 26

curl(1) Curl Manual curl(1)

-h, --help
Usage help.

-M, --manual
Manual. Display the huge help text.

-V, --version
Displays information about curl and the libcurl version it uses.

The first line includes the full version of curl, libcurl and other 3rd party libraries linked with the
executable.

The second line (starts with "Protocols:") shows all protocols that libcurl reports to support.

The third line (starts with "Features:") shows specific features libcurl reports to offer. Available
features include:

IPv6 You can use IPv6 with this.

krb4 Krb4 for FTP is supported.

SSL HTTPS and FTPS are supported.

libz Automatic decompression of compressed files over HTTP is supported.

NTLM NTLM authentication is supported.

GSS-Negotiate
Negotiate authentication and krb5 for FTP is supported.

Debug This curl uses a libcurl built with Debug. This enables more error-tracking and memory
debugging etc. For curl-developers only!

AsynchDNS
This curl uses asynchronous name resolves.

SPNEGO
SPNEGO Negotiate authentication is supported.

Largefile
This curl supports transfers of large files, files larger than 2GB.

IDN This curl supports IDN - international domain names.

SSPI SSPI is supported. If you use NTLM and set a blank user name, curl will authenticate
with your current user and password.

TLS-SRP
SRP (Secure Remote Password) authentication is supported for TLS.

Metalink
This curl supports Metalink (both version 3 and 4 (RFC 5854)), which describes mirrors
and hashes. curl will use mirrors for failover if there are errors (such as the file or server
not being available).

FILES
˜/.curlrc

Default config file, see-K, --configfor details.

ENVIRONMENT
The environment variables can be specified in lower case or upper case. The lower case version has prece-
dence. http_proxy is an exception as it is only available in lower case.

Using an environment variable to set the proxy has the same effect as using the--proxyoption.

Curl 7.27.0 27 July 2012 27

curl(1) Curl Manual curl(1)

http_proxy [protocol://]<host>[:port]
Sets the proxy server to use for HTTP.

HTTPS_PROXY [protocol://]<host>[:port]
Sets the proxy server to use for HTTPS.

[url-protocol]_PROXY [protocol://]<host>[:port]
Sets the proxy server to use for [url-protocol], where the protocol is a protocol that curl supports
and as specified in a URL. FTP, FTPS, POP3, IMAP, SMTP, LDAP etc.

ALL_PROXY [protocol://]<host>[:port]
Sets the proxy server to use if no protocol-specific proxy is set.

NO_PROXY <comma-separated list of hosts>
list of host names that shouldn’t go through any proxy. If set to a asterisk ’*’ only, it matches all
hosts.

PROXY PROTOCOL PREFIXES
Since curl version 7.21.7, the proxy string may be specified with a protocol:// prefix to specify alternative
proxy protocols.

If no protocol is specified in the proxy string or if the string doesn’t match a supported one, the proxy will
be treated as an HTTP proxy.

The supported proxy protocol prefixes are as follows:

socks4://
Makes it the equivalent of --socks4

socks4a://
Makes it the equivalent of --socks4a

socks5://
Makes it the equivalent of --socks5

socks5h://
Makes it the equivalent of --socks5-hostname

EXIT CODES
There are a bunch of different error codes and their corresponding error messages that may appear during
bad conditions. At the time of this writing, the exit codes are:

1 Unsupported protocol. This build of curl has no support for this protocol.

2 Failed to initialize.

3 URL malformed. The syntax was not correct.

4 A feature or option that was needed to perform the desired request was not enabled or was explic-
itly disabled at build-time. To make curl able to do this, you probably need another build of
libcurl!

5 Couldn’t resolve proxy. The given proxy host could not be resolved.

6 Couldn’t resolve host. The given remote host was not resolved.

7 Failed to connect to host.

8 FTP weird server reply. The server sent data curl couldn’t parse.

9 FTP access denied. The server denied login or denied access to the particular resource or directory
you wanted to reach. Most often you tried to change to a directory that doesn’t exist on the server.

11 FTP weird PASS reply. Curl couldn’t parse the reply sent to the PASS request.

13 FTP weird PASV reply, Curl couldn’t parse the reply sent to the PASV request.

Curl 7.27.0 27 July 2012 28

curl(1) Curl Manual curl(1)

14 FTP weird 227 format. Curl couldn’t parse the 227-line the server sent.

15 FTP can’t get host. Couldn’t resolve the host IP we got in the 227-line.

17 FTP couldn’t set binary. Couldn’t change transfer method to binary.

18 Partial file. Only a part of the file was transferred.

19 FTP couldn’t download/access the given file, the RETR (or similar) command failed.

21 FTP quote error. A quote command returned error from the server.

22 HTTP page not retrieved. The requested url was not found or returned another error with the
HTTP error code being 400 or above. This return code only appears if-f, --fail is used.

23 Write error. Curl couldn’t write data to a local filesystem or similar.

25 FTP couldn’t STOR file. The server denied the STOR operation, used for FTP uploading.

26 Read error. Various reading problems.

27 Out of memory. A memory allocation request failed.

28 Operation timeout. The specified time-out period was reached according to the conditions.

30 FTP PORT failed. The PORT command failed. Not all FTP servers support the PORT command,
try doing a transfer using PASV instead!

31 FTP couldn’t use REST. The REST command failed. This command is used for resumed FTP
transfers.

33 HTTP range error. The range "command" didn’t work.

34 HTTP post error. Internal post-request generation error.

35 SSL connect error. The SSL handshaking failed.

36 FTP bad download resume. Couldn’t continue an earlier aborted download.

37 FILE couldn’t read file. Failed to open the file. Permissions?

38 LDAP cannot bind. LDAP bind operation failed.

39 LDAP search failed.

41 Function not found. A required LDAP function was not found.

42 Aborted by callback. An application told curl to abort the operation.

43 Internal error. A function was called with a bad parameter.

45 Interface error. A specified outgoing interface could not be used.

47 Too many redirects. When following redirects, curl hit the maximum amount.

48 Unknown option specified to libcurl. This indicates that you passed a weird option to curl that was
passed on to libcurl and rejected. Read up in the manual!

49 Malformed telnet option.

51 The peer’s SSL certificate or SSH MD5 fingerprint was not OK.

52 The server didn’t reply anything, which here is considered an error.

53 SSL crypto engine not found.

54 Cannot set SSL crypto engine as default.

55 Failed sending network data.

56 Failure in receiving network data.

58 Problem with the local certificate.

Curl 7.27.0 27 July 2012 29

curl(1) Curl Manual curl(1)

59 Couldn’t use specified SSL cipher.

60 Peer certificate cannot be authenticated with known CA certificates.

61 Unrecognized transfer encoding.

62 Invalid LDAP URL.

63 Maximum file size exceeded.

64 Requested FTP SSL level failed.

65 Sending the data requires a rewind that failed.

66 Failed to initialise SSL Engine.

67 The user name, password, or similar was not accepted and curl failed to log in.

68 File not found on TFTP server.

69 Permission problem on TFTP server.

70 Out of disk space on TFTP server.

71 Illegal TFTP operation.

72 Unknown TFTP transfer ID.

73 File already exists (TFTP).

74 No such user (TFTP).

75 Character conversion failed.

76 Character conversion functions required.

77 Problem with reading the SSL CA cert (path? access rights?).

78 The resource referenced in the URL does not exist.

79 An unspecified error occurred during the SSH session.

80 Failed to shut down the SSL connection.

82 Could not load CRL file, missing or wrong format (added in 7.19.0).

83 Issuer check failed (added in 7.19.0).

84 The FTP PRET command failed

85 RTSP: mismatch of CSeq numbers

86 RTSP: mismatch of Session Identifiers

87 unable to parse FTP file list

88 FTP chunk callback reported error

XX More error codes will appear here in future releases. The existing ones are meant to never change.

AUTHORS / CONTRIBUTORS
Daniel Stenberg is the main author, but the whole list of contributors is found in the separate THANKS file.

WWW
http://curl.haxx.se

FTP
ftp://ftp.sunet.se/pub/www/utilities/curl/

SEE ALSO
ftp (1), wget(1)

Curl 7.27.0 27 July 2012 30

