
curl_multi_perform(3) libcurl Manual curl_multi_perform(3)

NAME
curl_multi_perform - reads/writes available data from each easy handle

SYNOPSIS
#include <curl/curl.h>

CURLMcode curl_multi_perform(CURLM *multi_handle, int *running_handles);

DESCRIPTION
This function handles transfers on all the added handles that need attention in an non-blocking fashion.

When an application has found out there’s data available for the multi_handle or a timeout has elapsed, the
application should call this function to read/write whatever there is to read or write right now etc.
curl_multi_perform() returns as soon as the reads/writes are done. This function does not require that there
actually is any data available for reading or that data can be written, it can be called just in case. It will
write the number of handles that still transfer data in the second argument’s integer-pointer.

If the amount ofrunning_handles is changed from the previous call (or is less than the amount of easy han-
dles you’ve added to the multi handle), you know that there is one or more transfers less "running". You can
then callcurl_multi_info_read(3) to get information about each individual completed transfer, and that
returned info includes CURLcode and more. If an added handle fails very quickly, it may never be counted
as a running_handle.

Whenrunning_handles is set to zero (0) on the return of this function, there is no longer any transfers in
progress.

RETURN VALUE
CURLMcode type, general libcurl multi interface error code.

Before version 7.20.0: If you receive CURLM_CALL_MULTI_PERFORM, this basically means that you
should callcurl_multi_perform again, before you select() on more actions. You don’t hav eto do it immedi-
ately, but the return code means that libcurl may have more data available to return or that there may be
more data to send off before it is "satisfied". Do note thatcurl_multi_perform(3) will return
CURLM_CALL_MULTI_PERFORM only when it wants to be called again immediately. When things are
fine and there is nothing immediate it wants done, it’ll returnCURLM_OK and you need to wait for
"action" and then call this function again.

This function only returns errors etc regarding the whole multi stack. Problems still might have occurred
on individual transfers even when this function returnsCURLM_OK. Usecurl_multi_info_read(3) to figure
out how individual transfers did.

TYPICAL USAGE
Most applications will usecurl_multi_fdset(3) to get the multi_handle’s file descriptors, and
curl_multi_timeout(3) to get a suitable timeout period, then it’ll wait for action on the file descriptors using
select(3). As soon as one or more file descriptor is ready,curl_multi_perform(3) gets called.

SEE ALSO
curl_multi_cleanup(3), curl_multi_init(3), curl_multi_fdset(3), curl_multi_info_read(3), libcurl-
errors(3)

libcurl 7.9.5 1 March 2002 1


