Files
@ 2dfe1b1b8d5e
Branch filter:
Location: libtransport.git/msvc-deps/protobuf/libprotobuf/google/protobuf/dynamic_message.cc
2dfe1b1b8d5e
19.9 KiB
text/plain
Travis: Do not build all backends, build just spectrum2_libcommuni_backend
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 | // Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// http://code.google.com/p/protobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
//
// DynamicMessage is implemented by constructing a data structure which
// has roughly the same memory layout as a generated message would have.
// Then, we use GeneratedMessageReflection to implement our reflection
// interface. All the other operations we need to implement (e.g.
// parsing, copying, etc.) are already implemented in terms of
// Reflection, so the rest is easy.
//
// The up side of this strategy is that it's very efficient. We don't
// need to use hash_maps or generic representations of fields. The
// down side is that this is a low-level memory management hack which
// can be tricky to get right.
//
// As mentioned in the header, we only expose a DynamicMessageFactory
// publicly, not the DynamicMessage class itself. This is because
// GenericMessageReflection wants to have a pointer to a "default"
// copy of the class, with all fields initialized to their default
// values. We only want to construct one of these per message type,
// so DynamicMessageFactory stores a cache of default messages for
// each type it sees (each unique Descriptor pointer). The code
// refers to the "default" copy of the class as the "prototype".
//
// Note on memory allocation: This module often calls "operator new()"
// to allocate untyped memory, rather than calling something like
// "new uint8[]". This is because "operator new()" means "Give me some
// space which I can use as I please." while "new uint8[]" means "Give
// me an array of 8-bit integers.". In practice, the later may return
// a pointer that is not aligned correctly for general use. I believe
// Item 8 of "More Effective C++" discusses this in more detail, though
// I don't have the book on me right now so I'm not sure.
#include <algorithm>
#include <google/protobuf/stubs/hash.h>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/dynamic_message.h>
#include <google/protobuf/descriptor.h>
#include <google/protobuf/descriptor.pb.h>
#include <google/protobuf/generated_message_util.h>
#include <google/protobuf/generated_message_reflection.h>
#include <google/protobuf/reflection_ops.h>
#include <google/protobuf/repeated_field.h>
#include <google/protobuf/extension_set.h>
#include <google/protobuf/wire_format.h>
namespace google {
namespace protobuf {
using internal::WireFormat;
using internal::ExtensionSet;
using internal::GeneratedMessageReflection;
// ===================================================================
// Some helper tables and functions...
namespace {
// Compute the byte size of the in-memory representation of the field.
int FieldSpaceUsed(const FieldDescriptor* field) {
typedef FieldDescriptor FD; // avoid line wrapping
if (field->label() == FD::LABEL_REPEATED) {
switch (field->cpp_type()) {
case FD::CPPTYPE_INT32 : return sizeof(RepeatedField<int32 >);
case FD::CPPTYPE_INT64 : return sizeof(RepeatedField<int64 >);
case FD::CPPTYPE_UINT32 : return sizeof(RepeatedField<uint32 >);
case FD::CPPTYPE_UINT64 : return sizeof(RepeatedField<uint64 >);
case FD::CPPTYPE_DOUBLE : return sizeof(RepeatedField<double >);
case FD::CPPTYPE_FLOAT : return sizeof(RepeatedField<float >);
case FD::CPPTYPE_BOOL : return sizeof(RepeatedField<bool >);
case FD::CPPTYPE_ENUM : return sizeof(RepeatedField<int >);
case FD::CPPTYPE_MESSAGE: return sizeof(RepeatedPtrField<Message>);
case FD::CPPTYPE_STRING:
switch (field->options().ctype()) {
default: // TODO(kenton): Support other string reps.
case FieldOptions::STRING:
return sizeof(RepeatedPtrField<string>);
}
break;
}
} else {
switch (field->cpp_type()) {
case FD::CPPTYPE_INT32 : return sizeof(int32 );
case FD::CPPTYPE_INT64 : return sizeof(int64 );
case FD::CPPTYPE_UINT32 : return sizeof(uint32 );
case FD::CPPTYPE_UINT64 : return sizeof(uint64 );
case FD::CPPTYPE_DOUBLE : return sizeof(double );
case FD::CPPTYPE_FLOAT : return sizeof(float );
case FD::CPPTYPE_BOOL : return sizeof(bool );
case FD::CPPTYPE_ENUM : return sizeof(int );
case FD::CPPTYPE_MESSAGE: return sizeof(Message*);
case FD::CPPTYPE_STRING:
switch (field->options().ctype()) {
default: // TODO(kenton): Support other string reps.
case FieldOptions::STRING:
return sizeof(string*);
}
break;
}
}
GOOGLE_LOG(DFATAL) << "Can't get here.";
return 0;
}
inline int DivideRoundingUp(int i, int j) {
return (i + (j - 1)) / j;
}
static const int kSafeAlignment = sizeof(uint64);
inline int AlignTo(int offset, int alignment) {
return DivideRoundingUp(offset, alignment) * alignment;
}
// Rounds the given byte offset up to the next offset aligned such that any
// type may be stored at it.
inline int AlignOffset(int offset) {
return AlignTo(offset, kSafeAlignment);
}
#define bitsizeof(T) (sizeof(T) * 8)
} // namespace
// ===================================================================
class DynamicMessage : public Message {
public:
struct TypeInfo {
int size;
int has_bits_offset;
int unknown_fields_offset;
int extensions_offset;
// Not owned by the TypeInfo.
DynamicMessageFactory* factory; // The factory that created this object.
const DescriptorPool* pool; // The factory's DescriptorPool.
const Descriptor* type; // Type of this DynamicMessage.
// Warning: The order in which the following pointers are defined is
// important (the prototype must be deleted *before* the offsets).
scoped_array<int> offsets;
scoped_ptr<const GeneratedMessageReflection> reflection;
scoped_ptr<const DynamicMessage> prototype;
};
DynamicMessage(const TypeInfo* type_info);
~DynamicMessage();
// Called on the prototype after construction to initialize message fields.
void CrossLinkPrototypes();
// implements Message ----------------------------------------------
Message* New() const;
int GetCachedSize() const;
void SetCachedSize(int size) const;
Metadata GetMetadata() const;
private:
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(DynamicMessage);
inline bool is_prototype() const {
return type_info_->prototype == this ||
// If type_info_->prototype is NULL, then we must be constructing
// the prototype now, which means we must be the prototype.
type_info_->prototype == NULL;
}
inline void* OffsetToPointer(int offset) {
return reinterpret_cast<uint8*>(this) + offset;
}
inline const void* OffsetToPointer(int offset) const {
return reinterpret_cast<const uint8*>(this) + offset;
}
const TypeInfo* type_info_;
// TODO(kenton): Make this an atomic<int> when C++ supports it.
mutable int cached_byte_size_;
};
DynamicMessage::DynamicMessage(const TypeInfo* type_info)
: type_info_(type_info),
cached_byte_size_(0) {
// We need to call constructors for various fields manually and set
// default values where appropriate. We use placement new to call
// constructors. If you haven't heard of placement new, I suggest Googling
// it now. We use placement new even for primitive types that don't have
// constructors for consistency. (In theory, placement new should be used
// any time you are trying to convert untyped memory to typed memory, though
// in practice that's not strictly necessary for types that don't have a
// constructor.)
const Descriptor* descriptor = type_info_->type;
new(OffsetToPointer(type_info_->unknown_fields_offset)) UnknownFieldSet;
if (type_info_->extensions_offset != -1) {
new(OffsetToPointer(type_info_->extensions_offset)) ExtensionSet;
}
for (int i = 0; i < descriptor->field_count(); i++) {
const FieldDescriptor* field = descriptor->field(i);
void* field_ptr = OffsetToPointer(type_info_->offsets[i]);
switch (field->cpp_type()) {
#define HANDLE_TYPE(CPPTYPE, TYPE) \
case FieldDescriptor::CPPTYPE_##CPPTYPE: \
if (!field->is_repeated()) { \
new(field_ptr) TYPE(field->default_value_##TYPE()); \
} else { \
new(field_ptr) RepeatedField<TYPE>(); \
} \
break;
HANDLE_TYPE(INT32 , int32 );
HANDLE_TYPE(INT64 , int64 );
HANDLE_TYPE(UINT32, uint32);
HANDLE_TYPE(UINT64, uint64);
HANDLE_TYPE(DOUBLE, double);
HANDLE_TYPE(FLOAT , float );
HANDLE_TYPE(BOOL , bool );
#undef HANDLE_TYPE
case FieldDescriptor::CPPTYPE_ENUM:
if (!field->is_repeated()) {
new(field_ptr) int(field->default_value_enum()->number());
} else {
new(field_ptr) RepeatedField<int>();
}
break;
case FieldDescriptor::CPPTYPE_STRING:
switch (field->options().ctype()) {
default: // TODO(kenton): Support other string reps.
case FieldOptions::STRING:
if (!field->is_repeated()) {
if (is_prototype()) {
new(field_ptr) const string*(&field->default_value_string());
} else {
string* default_value =
*reinterpret_cast<string* const*>(
type_info_->prototype->OffsetToPointer(
type_info_->offsets[i]));
new(field_ptr) string*(default_value);
}
} else {
new(field_ptr) RepeatedPtrField<string>();
}
break;
}
break;
case FieldDescriptor::CPPTYPE_MESSAGE: {
if (!field->is_repeated()) {
new(field_ptr) Message*(NULL);
} else {
new(field_ptr) RepeatedPtrField<Message>();
}
break;
}
}
}
}
DynamicMessage::~DynamicMessage() {
const Descriptor* descriptor = type_info_->type;
reinterpret_cast<UnknownFieldSet*>(
OffsetToPointer(type_info_->unknown_fields_offset))->~UnknownFieldSet();
if (type_info_->extensions_offset != -1) {
reinterpret_cast<ExtensionSet*>(
OffsetToPointer(type_info_->extensions_offset))->~ExtensionSet();
}
// We need to manually run the destructors for repeated fields and strings,
// just as we ran their constructors in the the DynamicMessage constructor.
// Additionally, if any singular embedded messages have been allocated, we
// need to delete them, UNLESS we are the prototype message of this type,
// in which case any embedded messages are other prototypes and shouldn't
// be touched.
for (int i = 0; i < descriptor->field_count(); i++) {
const FieldDescriptor* field = descriptor->field(i);
void* field_ptr = OffsetToPointer(type_info_->offsets[i]);
if (field->is_repeated()) {
switch (field->cpp_type()) {
#define HANDLE_TYPE(UPPERCASE, LOWERCASE) \
case FieldDescriptor::CPPTYPE_##UPPERCASE : \
reinterpret_cast<RepeatedField<LOWERCASE>*>(field_ptr) \
->~RepeatedField<LOWERCASE>(); \
break
HANDLE_TYPE( INT32, int32);
HANDLE_TYPE( INT64, int64);
HANDLE_TYPE(UINT32, uint32);
HANDLE_TYPE(UINT64, uint64);
HANDLE_TYPE(DOUBLE, double);
HANDLE_TYPE( FLOAT, float);
HANDLE_TYPE( BOOL, bool);
HANDLE_TYPE( ENUM, int);
#undef HANDLE_TYPE
case FieldDescriptor::CPPTYPE_STRING:
switch (field->options().ctype()) {
default: // TODO(kenton): Support other string reps.
case FieldOptions::STRING:
reinterpret_cast<RepeatedPtrField<string>*>(field_ptr)
->~RepeatedPtrField<string>();
break;
}
break;
case FieldDescriptor::CPPTYPE_MESSAGE:
reinterpret_cast<RepeatedPtrField<Message>*>(field_ptr)
->~RepeatedPtrField<Message>();
break;
}
} else if (field->cpp_type() == FieldDescriptor::CPPTYPE_STRING) {
switch (field->options().ctype()) {
default: // TODO(kenton): Support other string reps.
case FieldOptions::STRING: {
string* ptr = *reinterpret_cast<string**>(field_ptr);
if (ptr != &field->default_value_string()) {
delete ptr;
}
break;
}
}
} else if ((field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) &&
!is_prototype()) {
Message* message = *reinterpret_cast<Message**>(field_ptr);
if (message != NULL) {
delete message;
}
}
}
}
void DynamicMessage::CrossLinkPrototypes() {
// This should only be called on the prototype message.
GOOGLE_CHECK(is_prototype());
DynamicMessageFactory* factory = type_info_->factory;
const Descriptor* descriptor = type_info_->type;
// Cross-link default messages.
for (int i = 0; i < descriptor->field_count(); i++) {
const FieldDescriptor* field = descriptor->field(i);
void* field_ptr = OffsetToPointer(type_info_->offsets[i]);
if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE &&
!field->is_repeated()) {
// For fields with message types, we need to cross-link with the
// prototype for the field's type.
// For singular fields, the field is just a pointer which should
// point to the prototype.
*reinterpret_cast<const Message**>(field_ptr) =
factory->GetPrototypeNoLock(field->message_type());
}
}
}
Message* DynamicMessage::New() const {
void* new_base = reinterpret_cast<uint8*>(operator new(type_info_->size));
memset(new_base, 0, type_info_->size);
return new(new_base) DynamicMessage(type_info_);
}
int DynamicMessage::GetCachedSize() const {
return cached_byte_size_;
}
void DynamicMessage::SetCachedSize(int size) const {
// This is theoretically not thread-compatible, but in practice it works
// because if multiple threads write this simultaneously, they will be
// writing the exact same value.
cached_byte_size_ = size;
}
Metadata DynamicMessage::GetMetadata() const {
Metadata metadata;
metadata.descriptor = type_info_->type;
metadata.reflection = type_info_->reflection.get();
return metadata;
}
// ===================================================================
struct DynamicMessageFactory::PrototypeMap {
typedef hash_map<const Descriptor*, const DynamicMessage::TypeInfo*> Map;
Map map_;
};
DynamicMessageFactory::DynamicMessageFactory()
: pool_(NULL), delegate_to_generated_factory_(false),
prototypes_(new PrototypeMap) {
}
DynamicMessageFactory::DynamicMessageFactory(const DescriptorPool* pool)
: pool_(pool), delegate_to_generated_factory_(false),
prototypes_(new PrototypeMap) {
}
DynamicMessageFactory::~DynamicMessageFactory() {
for (PrototypeMap::Map::iterator iter = prototypes_->map_.begin();
iter != prototypes_->map_.end(); ++iter) {
delete iter->second;
}
}
const Message* DynamicMessageFactory::GetPrototype(const Descriptor* type) {
MutexLock lock(&prototypes_mutex_);
return GetPrototypeNoLock(type);
}
const Message* DynamicMessageFactory::GetPrototypeNoLock(
const Descriptor* type) {
if (delegate_to_generated_factory_ &&
type->file()->pool() == DescriptorPool::generated_pool()) {
return MessageFactory::generated_factory()->GetPrototype(type);
}
const DynamicMessage::TypeInfo** target = &prototypes_->map_[type];
if (*target != NULL) {
// Already exists.
return (*target)->prototype.get();
}
DynamicMessage::TypeInfo* type_info = new DynamicMessage::TypeInfo;
*target = type_info;
type_info->type = type;
type_info->pool = (pool_ == NULL) ? type->file()->pool() : pool_;
type_info->factory = this;
// We need to construct all the structures passed to
// GeneratedMessageReflection's constructor. This includes:
// - A block of memory that contains space for all the message's fields.
// - An array of integers indicating the byte offset of each field within
// this block.
// - A big bitfield containing a bit for each field indicating whether
// or not that field is set.
// Compute size and offsets.
int* offsets = new int[type->field_count()];
type_info->offsets.reset(offsets);
// Decide all field offsets by packing in order.
// We place the DynamicMessage object itself at the beginning of the allocated
// space.
int size = sizeof(DynamicMessage);
size = AlignOffset(size);
// Next the has_bits, which is an array of uint32s.
type_info->has_bits_offset = size;
int has_bits_array_size =
DivideRoundingUp(type->field_count(), bitsizeof(uint32));
size += has_bits_array_size * sizeof(uint32);
size = AlignOffset(size);
// The ExtensionSet, if any.
if (type->extension_range_count() > 0) {
type_info->extensions_offset = size;
size += sizeof(ExtensionSet);
size = AlignOffset(size);
} else {
// No extensions.
type_info->extensions_offset = -1;
}
// All the fields.
for (int i = 0; i < type->field_count(); i++) {
// Make sure field is aligned to avoid bus errors.
int field_size = FieldSpaceUsed(type->field(i));
size = AlignTo(size, min(kSafeAlignment, field_size));
offsets[i] = size;
size += field_size;
}
// Add the UnknownFieldSet to the end.
size = AlignOffset(size);
type_info->unknown_fields_offset = size;
size += sizeof(UnknownFieldSet);
// Align the final size to make sure no clever allocators think that
// alignment is not necessary.
size = AlignOffset(size);
type_info->size = size;
// Allocate the prototype.
void* base = operator new(size);
memset(base, 0, size);
DynamicMessage* prototype = new(base) DynamicMessage(type_info);
type_info->prototype.reset(prototype);
// Construct the reflection object.
type_info->reflection.reset(
new GeneratedMessageReflection(
type_info->type,
type_info->prototype.get(),
type_info->offsets.get(),
type_info->has_bits_offset,
type_info->unknown_fields_offset,
type_info->extensions_offset,
type_info->pool,
this,
type_info->size));
// Cross link prototypes.
prototype->CrossLinkPrototypes();
return prototype;
}
} // namespace protobuf
} // namespace google
|